Table 41. Site Specific Management Measures Action Plan. | CALE | DONIA | | | | | | | | | | | |-----------------------|---|-------------------------------------|--------------------------------------|--|--|--|---------------------------|--|--|--|---------------------------------------| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | DETENTIO | ON BASIN RETRO | FITS & MA | INTENANCE (| See Figure 68) | | | | | | | | | Technical | and Financial Ass | sistance Ne | eeds: Technica | al assistance needed to implement detent | ion basin retrofits is relatively low while financ | | ds are mode | rate. Private lando | wners will requir | e the greatest assistance | | | 19A | Between
Kingdom Ct. &
Mary Drew Dr. | 0.7 acres | Residential
HOA
(private) | Existing wet bottom detention basins with mown turf grass side slopes. | Design and implement project revegetate basin side slopes with native vegetation. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Residential
HOA | Ecological
Consultant/
Contractor | \$8,500 to design
and install prairie
vegetation; \$1,000/
year maintenance | 10-20+ Years | | 20A, 20B | Prince of Peace
Lutheran
Church | 0.1 acres | Church
(private) | Two existing small depressional detention areas near access road to church. Both areas are dominated by invasive wetland vegetation. | Design and implement project to create aesthetically pleasing stormwater features by removing invasive species and replanting with native vegetation similar to a grain garden. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Prince of Peace
Lutheran
Church | Root-Pike WIN;
Ecological
Consultant | \$10,000 to design and plant as rain gardens; \$500/yr maintenance | 1-10 Years | | 20C | N end of
Nature Dr. | 0.1 acres | Resident
(private) | Existing small dry bottom detention basin with mown turf grass adjacent to Tributary G within residential area. | Design and implement project to revegetate basin with native vegetation to establish aesthetically pleasing rain garden feature that will improve water quality, wildlife habitat, and green infrastructure connection benefits. | Dry Detention:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 88% | Low | Resident | Root-Pike WIN | \$3,000 to design and
plant as rain garden;
\$100/yr maintenance | 1-10 Years | | 20D | NW side of
Baywood
Estates
Subdivision | 0.7 acres | Residential
HOA
(private) | Existing wetland bottom detention basin servicing Baywood Estates Subdivision. Basin is dominated by invasive species and a 400 lf low flow concrete channel with turf grass slopes enters the basin from the south. | Design and implement project to alter low flow concrete channel and plant side slopes with native vegetation. Replant detention area with native wetland vegetation. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | High:
Critical
Area | Caledonia;
Developer;
Residential
HOA | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$25,000 to design
and install; \$1,000/yr
maintenance | 1-10 Years | | 21A | SW corner of
Stephan Rd &
Ambassador
Ln. | 0.4 acres | Residential
HOA
(private) | Existing dry bottom basin with
mown turf grass servicing adjacent
subdivision. Basin is located adjacent to
Tributary G Reach 3. | Design and implement project to
naturalize detention basin by replacing turf
grass with native vegetation to improve
water quality, wildlife habitat, and green
infrastructure connection. | Dry Detention:
TSS = 5 tons/yr
TN = 52 lbs/yr
TP = 6 lbs/yr
Bacteria = 88% | High:
Critical
Area | Residential
HOA | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$20,000 to design
and install native
vegetation; \$1,500/yr
maintenance | 1-10 Years | | 24A | Candlelight
Meadows
Subdivision | 0.7 acres | Residential
HOA
(private) | Existing dry bottom detention in form of mown turf grass swale along north side of development. | Design and implement project to convert dry bottom detention into bioswale planted with native vegetation. | Dry Detention:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 88% | Low | Residential
HOA | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$12,000 to design
and install native
vegetation; \$1,000/yr
maintenance | 10-20+ Years | | 25A | SW corner of
Heartland Ln. &
Middle Road | 0.4 acres | Residential
HOA
(private) | Existing dry bottom basin with mown turf grass servicing adjacent subdivision. Basin is located at headwaters of Tributary G Reach 6. | Design and implement project to naturalize detention basin by replacing turf grass with native vegetation to improve water quality, wildlife habitat, and green infrastructure connection. | Dry Detention:
TSS = 5 tons/yr
TN = 52 lbs/yr
TP = 6 lbs/yr
Bacteria = 88% | High:
Critical
Area | Residential
HOA | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$20,000 to design
and install native
vegetation; \$1,500/yr
maintenance | 1-10 Years | | 22A, 26A,
26B, 26C | Audubon
Arboretum
Subdivision | 3.5 acres | Caledonia;
Developer
(private) | Four existing naturalized wet bottom detention basins in uncompleted Audubon Arboretum conservation development. | Spot seed and plant with additional native vegetation and maintain to preserve quality. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Caledonia;
Developer;
HOA long term | Ecological
Consultant/
Contractor | \$20,000 to remediate;
\$4,000/yr maintenance | When
development
resumes | | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |-----------|---|-------------------------------------|---|---|---|--|---------------------------|-----------------------------------|--|---|---------------------------------------| | 26D | NE of Five Mile
Rd. & Charles
St. | 2.3 acres | Residential
HOA
(private) | Existing wet bottom detention basin with mown turf grass slopes surrounded by residential development. Landowners have installed multiple shoreline features. | Work with landowners to develop a consistent buffer of native plants around pond to enhance water quality and wildlife benefits. | Wetland Det.:
TSS = 60%
TN = 35%
TP = 45%
Bacteria = 70% | Low | Residential
HOA | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$40,000 to design
and install native
vegetation; \$3,000/yr
maintenance | 10-20+ Years | | 26E | Between Shore
Dr. & Newberry
Ln. | 4.2 acres | Residential
HOA
(private) | Existing wet bottom detention
basin with mown turf grass slopes
surrounded by residential development.
Landowners have installed multiple
shoreline features. | Work with landowners to develop a consistent buffer of native plants around pond to enhance water quality and wildlife benefits. | Wetland Det.:
TSS = 60%
TN = 35%
TP = 45%
Bacteria = 70% | Low | Residential
HOA | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$70,000 to design
and install native
vegetation; \$4,000/yr
maintenance | 10-20+ Years | | 29A, 30A | Parkview
Senior Living | 0.8 acres | Association (private) | Two existing naturalized wet bottom detention basins in average ecological condition but with many invasive species along shoreline and buffer. | Implement annual management program to control invasive species. | Wetland Det.:
TSS = 60%
TN = 35%
TP = 45%
Bacteria = 70% | Medium | Association | Ecological
Contractor | \$2,000/yr maintenance | Ongoing | | 31A | N side of
Johnson Ave. | 18 acres | Caledonia
(public) | Large dry bottom
regional detention
basin servicing surrounding
development. Basin consists of low
flow concrete channels and mown
turf grass. Basin is also located at
headwaters of Tributary J. | Design, permit, and install project to retrofit exiting detention basin by altering low flow channels and creating wetland and prairie storage areas that would provide water quality benefits, wildlife habitat and, green infrastructure. | Wetland Det:
TSS=67 tons/yr
TN=474 lbs/yr
TP=107 lbs/yr
Bacteria=78% | High:
Critical
Area | Caledonia | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$450,000 to design,
permit, and install;
\$6,000/yr maintenance | 1-10 Years | | 34A | NW corner of
Pilgrim Dr. &
Stonebridge
Dr. | 3.7 acres | Residential
HOA
(private) | Existing dry bottom detention basin servicing adjacent subdivision. Basin consists mostly of mown turf grass and also abuts the Union Pacific RR. | Design and implement project to retrofit basin by removing turf grass and installing native vegetation to improve water quality, wildlife, and green infrastructure benefits while reducing long term maintenance costs. | Dry Detention:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 88% | Medium | Residential
HOA | Ecological
Consultant/
Contractor | \$45,000 to design
and install native
vegetation; \$3,000/yr
maintenance | 10-20+ Years | | WETLAND | RESTORATION (| (See Figure | e 69) | | | | | | | | | | Technical | and Financial Ass | sistance Ne | eeds: Wetland | restoration projects are typically complex | and require high technical and financial assi | | otect land, de | esign, construct, n | nonitor, and mair | ntain the restoration. | | | 3, 4 | Charles St. and 3 Mile Rd. | 90 acres | Vulcan
Materials
Company
(private) | 90 acres of drained wetland located
within two parcels owned by Vulcan
Materials Company. Land is slated for
future residential development | Incorporate up to 50% of the site as wetland restoration into future development plans and use restored wetland areas as wetland detention and mitigation. | Wetland:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Future
Developer;
Caledonia | WDNR; NRCS;
Engineer;
Ecological
Consultant | \$675,000 to design/
permit/install/
maintain wetland
mitigation bank | When planning for development occurs | | 5 | W of Erie St. | 8 acres | Resident
(private) | 8 acres of drained wetland behind residence. | Resident could restore 8 acres of wetland as personal wildlife sanctuary by restoring hydrology and planting native wetland vegetation. | Wetland:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Resident | Root-Pike WIN;
Ecological
Consultant | \$60,000 to design,
permit, and install
wetland | 10-20+ Years | | 6 | W side of Ruby
Ave. | 2 acres | Owner
(private) | 2 acres of drained wetland on private vacant land that is slated for future residential development. | Land could be purchased by Caledonia or other entity and restored to wetland for stormwater storage purposes. | Wetland:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Owner;
Caledonia | Civil Engineer;
Ecological
Consultant | \$40,000 to design,
permit and install
wetland | 10-20+ Years | | 7 | Ag field S of
Prairie School | 4 acres | Owner
(private) | 4 acres of drained wetland on existing agricultural field. Land is likely to be developed in future. | Incorporate wetland restoration into future development plans by using areas as wetland detention basis. | Wetland:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Future
Developer;
Caledonia | WDNR; NRCS;
Engineer;
Ecological
Consultant | \$80,000 to design/
permit/install/
maintain wetland
detentions | When planning for development occurs | | ID# | Location | Units (acres/ linear feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |------------|--|----------------------------|--|--|---|--|---------------------------|---|---|--|--| | 11 | W of Royal
Park Rd. & S of
Four Mile Rd. | 14 acres | Residence
(private) | 14 acres of drained wetlands on private residential property and abutting a large regional detention area to south. Area is headwaters of Tributary J. | Investigate homeowner(s) openness to restoring wetlands in their back yards. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Private
Residence | Root-Pike WIN | \$70,000 to install and maintain wetland | 10-20+ Years | | 12 &
13 | NE of 4 Mile
Rd. & Charles
Rd. | 12.5 acres | Agricultural
Land Owner
(private) | 12.5 acres of drained wetlands
on private agricultural land near
headwaters of Tributary J. Areas
are also slated for future residential
development. | Investigate future developer's openness to restoring wetlands as a green infrastructure feature of the development. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Future
Developer;
Caledonia | Root-Pike WIN | \$50,000 to install and
maintain wetland | As new development is planned | | 14 | Between
Erie St. &
Whirlaway Ln. | 9 acres | Agricultural
Land Owner
(private) | 9 acres of drained wetlands along
the south side of Tributary I on private
agricultural land that is slated for future
residential development. | Incorporate wetland restoration in future conservation or low impact residential development plans by using most feasible areas as wetland detention and/or mitigation. | Wetland Restore:
TSS=2.5 tons/yr
TN=24 lbs/yr
TP=7 lbs/yr
Bacteria=78% | High:
Critical
Area | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$150,000 to design/
permit/install/
maintain wetland | As new development is planned | | 15 | NE of 4 Mile
Rd. & Chester
Ln. | 30 acres | Agricultural
Land Owner
(private) | 30 acres of drained wetlands adjacent to Crawford Park on private agricultural land that is slated for future residential development. | Incorporate wetland restoration in future conservation or low impact residential development plans by using most feasible areas as wetland detention and/or mitigation. | Wetland Restore:
TSS=8 tons/yr
TN=49 lbs/yr
TP=15 lbs/yr
Bacteria=78% | High:
Critical
Area | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$225,000 to design/
permit/install/
maintain wetland | As new development is planned | | 16 | SD corner of
4 ½ Mile Rd. &
Route 32 | 12 acres | Agricultural
Land Owner
(private) | 12 acres of drained wetlands on 20+
acre agricultural parcel that is adjacent
to Tributary G. Parcel is slated for future
residential development. | Incorporate wetland restoration in future conservation or low impact residential development plans by using most feasible areas as wetland detention and/or mitigation. | Wetland Restore:
TSS=4 tons/yr
TN=27 lbs/yr
TP=8 lbs/yr
Bacteria=78% | High:
Critical
Area | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$150,000 to design/
permit/install/
maintain wetland | As new development is planned | | 19 | SW corner of 5 ½ Mile Rd. & Charles St. | 130 acres | Ag and
natural
land W of
Audubon
Arboretum | Primary agricultural land along Tributary G and abutting uncompleted Audubon Arboretum residential subdivision. Land is slated for future residential development. | Incorporate wetland restoration along Tributary G into future conservation development plans where feasible. Restored wetlands can be used as detention and/or wetland mitigation. | Wetland Restore:
TSS=25 tons/yr
TN=24 lbs/yr
TP=37 lbs/yr
Bacteria=78% | High:
Critical
Area | Future/ Existing
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$600,000 to design/
permit/install/
maintain wetland | As new development is planned or resumes | | 20 | Between
Catherine Dr.
& Rebecca Rd. | 16.5 acres | Agricultural
Land Owner
(private) | Primary agricultural land along Tributary G on east end of parcel. Land is slated for future residential development. Area is also adjacent to SEWRPC Environmental Corridor. | Incorporate wetland restoration along Tributary G into future conservation development plans where feasible. Restored wetlands can be used as detention and/or wetland mitigation. | Wetland Restore:
TSS=10 tons/yr
TN=64 lbs/yr
TP=24 lbs/yr
Bacteria=78% | High:
Critical
Area | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$240,000 to design/
permit/install/
maintain wetland | As new development is planned | | 21 | N of 5 ½ Mile
Rd. along
Tributary
G
Reach 3 | 15 acres | Agricultural
Land Owner
(private) | 16.5 acres of drained wetlands along
Tributary G Reach 3. Land is currently
agricultural and slated for future
residential development. Area is also
adjacent to SEWRPC Environmental
Corridor. | Incorporate wetland restoration in future conservation or low impact residential development plans by using drained wetlands along Tributary G as wetland/floodplain detention and/or mitigation. | Wetland Restore:
TSS=7 tons/yr
TN=43 lbs/yr
TP=13 lbs/yr
Bacteria=78% | High:
Critical
Area | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$225,000 to design/
permit/install/
maintain wetland | As new
development is
planned | | 22 | Cliffside Park | 46.5 acres | Racine
County
(public) | 46.5 acres of drained wetland within Cliffside Park abutting Tributary F. The majority of the existing vegetation here is comprised of old field species. | Investigate possibility to restore hydrology and native vegetation as part of a potential wetland mitigation bank. | Wetland Restore:
TSS=3 tons/yr
TN=10 lbs/yr
TP=7 lbs/yr
Bacteria=78% | High:
Critical
Area | Racine County | WDNR;
Hydrologist;
Ecological
Consultant | \$460,000 to design/
permit/install/
maintain wetland
mitigation bank | 1-10 Years | | 26 | Between
Douglas
Ave. & Union
Pacific RR | 5 acres | Agricultural
Land Owner
(private) | 5 acres of drained wetlands along
Tributary G on agricultural land.
Land is slated for future residential
development. | Incorporate wetland restoration in future development plans by using drained wetlands along Tributary G as wetland/floodplain detention. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Future
Developer;
Caledonia | Caledonia;
Engineer;
Ecological
Consultant | \$40,000 to design/
permit/install/
maintain wetland | As new development is planned | | ID# | | Units
(acres/
linear
feet) Owner
(public or
private) | Existing Condition | Management Measure Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |-----|--|---|--------------------|-----------------------------------|--------------------------------------|----------|-----------------------|---------------------------------------|---------------|---------------------------------------| |-----|--|---|--------------------|-----------------------------------|--------------------------------------|----------|-----------------------|---------------------------------------|---------------|---------------------------------------| ## STREAMBANK, RAVINE, & CHANNEL RESTORATION (See Figure 70) Technical and Financial Assistance Needs: Stream restorations are complex and require high technical and financial assistance needs to protect land, design, construct, monitor, and maintain the restoration. The project becomes more complex in areas that flow through several governing bodies or multiple private residences. Technical and financial assistance associated with stream maintenance is generally low for minor tasks such as removing debris. | TRE 3:
Tributary
E Reach
2 | We Energies
property
(Rifle Range
Ravine) | 3,201
linear
feet | We
Energies
(private) | 3,201 If of tributary/ravine (to Lake Michigan) on land owned by We Energies (Rifle Range Ravine). A headcut is located at upper portions of reach followed by a deeply incised ravine exhibiting severely eroded slopes. | Design, permit, and implement project to stabilize headcut and highly eroded ravine slopes using a combination of bioengineering and hard armoring approaches. Grade controls will also be needed within the channel to control flow velocities. | Stabilize Banks:
TSS=5,510 t/yr
TN=11,019 lbs/yr
TP =5,510 lbs/yr
Bacteria = n/a | High:
Critical
Area | We Energies | WDNR;
Hydrologist;
Ecological
Consultant;
Contractor | \$3,000,000 to
design, permit,
and implement
stabilization
measures | 1-10 Years
Design; 10+
Years Build | |-------------------------------------|--|-------------------------|------------------------------|--|---|--|---------------------------|------------------|--|---|---| | TRF 4:
Tributary
F Reach
4 | Cliffside
Park
(Cliffside
Park Ravine) | 2,450
linear
feet | Racine
County
(public) | 2,450 lf of tributary/ravine (to Lake Michigan) on land owned by Racine County (Cliffside Park Ravine). Two headcuts are located at upper portions of reach where it meets Reaches 2 & 3. This is followed by a moderately incised ravine exhibiting highly eroded slopes. | Design, permit, and implement project to stabilize headcuts and highly eroded ravine slopes using a combination of bioengineering and hard armoring approaches. Grade controls will also be needed within the channel to control flow velocities. | Stabilize Banks:
TSS=906 t/yr
TN=1,812 lbs/yr
TP =906 lbs/yr
Bacteria = n/a | High:
Critical
Area | Racine
County | WDNR;
Hydrologist;
Ecological
Consultant;
Contractor | \$1,200,000 to
design, permit,
and implement
stabilization
measures | 1-10 Years
Design' 10+
Years Build | | TRG 5:
Tributary
G Reach
5 | Crawford
Park to
Novak Rd. | 8,073
linear
feet | Caledonia
(public) | 8,073 If of tributary between Crawford Park and Novak Rd. within a human created drainage ditch with concrete low flow channel. | Design and implement project to disable low
flow channel in up to 20 locations to install
artificial riffles. This could be completed in
conjunction with riparian area restoration. | n/a | Low | Caledonia | Stormwater
Engineer | \$60,000 to install up to 20 artificial riffles | In conjunction with riparian area restoration | ## RIPARIAN AREA RESTORATION & MAINTENANCE (See Figure 71) Technical and Financial Assistance Needs: Technical assistance needed to implement riparian area & lake buffer restoration and maintenance is moderate at first because an environmental consultant is usually hired to complete a plan and implement the work. However, costs can be greatly reduced over time if municipal or park district staff complete some restoration and most of the long term maintenance in house. Private landowners will need the greatest assistance. | | | , | | taly reduced ever time in marile par or park disti | | 9 11 11 | | | | | | |--|--|-------------------------|---|--|---|--|---------------------------|-------------------|---|--|--------------| | TRE 1:
Tributary
E Reach
1 | Route 32 to
N of 7 Mile
Rd. | 3,781
linear
feet | Mostly
private
agricultural
land | 3,468 If of tributary with a narrow degraded riparian buffer of invasive shrubs and trees in most agricultural areas. | Achieve SEWRPC recommended Goals of 75 whereby 75% minimum of the total stream length should be naturally vegetated and 75 foot wide minimum riparian buffer established. | Filter Strip:
TSS =5.5 tons/yr
TN = 103 lbs/yr
TP = 11 lbs/yr
Bacteria = 37% | High:
Critical
Area | Private
Owners | USDA-NRCS | \$55,000 to
restore riparian
buffer; \$5,000/yr
maintenance | 1-10 Years | | TRE 4/5:
Tributary
E
Reaches
4 & 5 | Route 32
to Union | 4,409
linear
feet | We
Energies
(private) | 4,409 If at headwaters of Tributary E
on property owned by We Energies.
Buffer area consists primary of old field
vegetation. | Achieve SEWRPC recommended Goals of 75 whereby 75% minimum of the total stream length should be naturally vegetated and 75 foot wide minimum riparian buffer established. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | We Energies | Ecological
Consultant/
Contractor | \$37,500 to
restore riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRE 2/6:
Tributary
E
Reaches
2 & 6 | We Energies | 3,158
linear
feet | We
Energies
(private) | 3,158 linear feet
of riparian area that is generally in good condition but with invasive woody species present. | Enhance riparian buffer by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | We Energies | Ecological
Consultant/
Contractor | \$45,000 to
enhance riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRF 1:
Tributary
F Reach
1 | W of Union
Pacific RR
to Cliffside
Park | 4,390
linear
feet | Private Ag &
Residential
Properties | 4,390 If of tributary beginning primarily in agricultural fields then flowing through a residential subdivision through a concrete channel prior to entering Cliffside Park. The riparian buffer is narrow in the ag areas and is mown turf grass in the residential area. | Design and implement project to enhance riparian areas with native prairie vegetation where feasible. Project would create a wildlife corridor and have water quality benefits. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Medium | Private
Owners | Root-Pike WIN;
Stormwater
Engineer;
Ecological
Consultant | \$40,000 to
enhance riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRF 2/3:
Tributary
F
Reaches
2 & 3 | Cliffside | 4,790
linear
feet | Racine
County | 4,790 If of tributary with average quality riparian buffer but with presence of many invasive woody species. | Enhance riparian buffers by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Racine
County | Ecological
Consultant/
Contractor | \$66,000 to
enhance riparian
buffer; \$6,000/yr
maintenance | 10-20+ Years | | ID# | Location | Units (acres/ linear feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule (Years) | |-------------------------------------|--|--|---|---|---|--|---------------------------|-----------------------------------|---|---|------------------------------------| | TRG 1:
Tributary
G Reach
1 | Between
Route 31 &
Route 32 | 3,197
linear feet | Private
Residential
Properties | 3,197 If of tributary flowing through a channelized swale in residential subdivision. Swale side slopes are primarily mown turf grass. | Design and implement project to enhance riparian areas and swale bottom with native prairie & wetland vegetation where feasible to create wildlife corridor and provide water quality benefits. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Medium | Private
Owners | Root-Pike WIN;
Stormwater
Engineer;
Ecological
Consultant | \$35,000 to
enhance riparian
buffer; \$4,000/yr
maintenance | 10-20+ Years | | TRG 2:
Tributary
G Reach
2 | Headwaters
to Union
Pacific RR | 7,231
linear feet | Multiple
Private
Properties | 7,231 If of tributary spanning many private properties between the headwaters west of Route 31 and Union Pacific RR. Much of the riparian area is at least moderate quality but with many invasive woody species. | Enhance select riparian buffer areas by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$40,000 to
enhance riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRG 3:
Tributary
G Reach
3 | Union
Pacific RR to
5 ½ Mile Rd. | 7,108
linear feet | Multiple
Private
Properties | 7,108 If of tributary located across multiple private properties from Union Pacific RR to 5 ½ Mile Rd. Most of reach has a natural but low quality riparian buffer dominated by invasive woody species. | Enhance select riparian buffer areas by selectively removing invasive woody species and extending buffer width where feasible in agricultural areas. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$60,000 to
enhance riparian
buffer; \$6,000/yr
maintenance | 10-20+ Years | | TRG 4:
Tributary
G Reach
4 | Holy Cross
Cemetery
to Crawford
Park | 4,056
linear feet | Multiple
Urban
Private
Properties | 4,056 If of tributary that is channelized through multiple urban areas. Riparian condition varies but is mown turf grass in many areas. | Achieve SEWRPC recommended Goals of 75 whereby 75% minimum of the total stream length should be naturally vegetated and 75 foot wide minimum riparian buffer established. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$70,000 to
enhance riparian
buffer; \$7,000/yr
maintenance | 10-20+ Years | | TRG 5:
Tributary
G Reach
5 | Crawford
Park to
Novak Rd. | 8,073
linear feet | Caledonia
(public) | 8,073 If of tributary between Crawford Park and
Novak Rd. within a human created drainage ditch
with concrete low flow channel. Side slopes are
mown turf grass. | Design and implement project to restore native prairie and wetland vegetation along buffer areas to create green infrastructure connection benefits. A bike or walking trail could also be constructed. | Filter Strip:
TSS =75 tons/yr
TN = 984 lbs/yr
TP = 154 lbs/yr
Bacteria = 37% | High:
Critical
Area | Caledonia | Stormwater
Engineer;
Ecological
Consultant | \$100,000 to
enhance riparian
buffer; \$10,000 /yr
maintenance | 1-10 Years | | TRG 6:
Tributary
G Reach
6 | Middle Rd.
to TRG5 | 3,198
linear feet | Private
Agricultural
Property | 3,198 If of tributary that is moderately channelized along north side of agricultural field. Riparian buffer is mostly a narrow bank of second growth invasive woody species. | Increase riparian buffer width to at least 75 feet along south side of tributary within agricultural field. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private Owner | USDA-NRCS | \$10,000 to
restore riparian
buffer; \$1,000/yr
maintenance | 10-20+ Years | | TRH 1:
Tributary
H Reach
1 | Charles
St. to Lake
Michigan | 4,501
linear feet | Primarily
Private
Residential
Properties | 4,501 If of tributary that is in average ecological condition with intact floodplain dominated by second growth woody species. Some invasive species such as buckthorn and honeysuckle are found in the riparian area. | Enhance select riparian buffer areas by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$40,000 to
enhance riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRI 1:
Tributary
I Reach
1 | Charles
St. to Lake
Michigan | 5,880
linear feet | Primarily
Private
Residential
Properties | 5,880 If of tributary that is in good ecological condition with intact floodplain dominated by older second growth woody species. Some invasive species such as buckthorn and honeysuckle are found in the riparian area. | Enhance select riparian buffer areas by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$54,000 to
enhance riparian
buffer; \$6,000/yr
maintenance | 10-20+ Years | | TRI J:
Tributary
J Reach
1 | West of Erie
St. to Lake
Michigan | 7,468
linear feet
(3,700 in
Caled.) | Primarily
Private
Residential
Properties | 3,700 If of upstream portion of tributary that is in good ecological condition with intact floodplain dominated by older second growth woody species. Some invasive species such as buckthorn and honeysuckle are found in the riparian area. | Enhance select riparian buffer areas by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private
Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$34,000 to
enhance riparian
buffer; \$4,000/yr
maintenance | 10-20+ Years | | GREEN IN | NFRASTRUCTU | RE PROTECT | ΓΙΟΝ AREAS (| See Figure 72) | | | | | | | | | Technica | and Financial | Assistance N | leeds: Technic | cal and financial assistance needed to protect op | en space or implement conservation/low im | pact development | s high bed | cause of land, des | sign/permitting, a | nd construction costs. | | | GI6 | Generally
between 6
Mile and 7
Mile Rd. | 334 acres | Private
agricultural
and vacant
land | 334 acres on private agricultural and vacant parcels
along Tributary E Reach 1 and Cliffside
Park to the
southeast. Parcels are slated for residential and also
contain SEWRPC Environmental Corridors. | Incorporate Conservation or Low Impact design standards into future development plans. | Pollutant reduction
cannot be
assessed via
modeling | High:
Critical
Area | Future
Developer;
Caledonia | WDNR;
USACE; NRCS/
SWCD; Eco.
Consultant | Cost for implementing a Conservation or Low Impact Development cannot be determined | As new development occurs | | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |---------|---|-------------------------------------|---|--|--|--|---------------------------|-------------------------------------|--|---|---------------------------------------| | GI7 | NW of 5 Mile
Rd. and Rt.
31 | 85 acres | Private
agricultural
land and
woodland | 85 acres on private agricultural land and woodland at headwaters of Tributary G Reach 2. SEWRPC Environmental Corridors are also included on these parcels. Parcels are slated for future residential development. | Incorporate Conservation or Low Impact design standards into future development plans. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Caledonia | WDNR; USACE;
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a
Conservation or Low Impact
Development cannot be
determined | As new development occurs | | GI8 | Generally
between 5
½ and 5 Mile
Rd. | 228
acres | Primary
private
agricultural | 228 acres of land on parcels that are primarily agricultural and slated for future residential development along Tributary G Reaches 5 & 6. The unfinished "Arboretum" subdivision and SEWRPC Environmental Corridors are also located within this area. | Incorporate Conservation or Low Impact design standards into future development plans. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Caledonia | WDNR; USACE;
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a
Conservation or Low Impact
Development cannot be
determined | As new
development
occurs | | GI9 | N of 4 Mile
Rd. | 96 acres | Primary
private
agricultural | 96 acres of land on parcels that are primarily agricultural and slated for future residential development and cemetery expansion at headwaters of Tributary G Reach 4. | Incorporate Conservation or Low Impact design standards into future residential development plans and incorporate stormwater best management practices into cemetery expansion where feasible. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Caledonia | WDNR; USACE;
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a
Conservation or Low Impact
Development & other
stormwater BMPs cannot
be determined | As new development occurs | | GI10 | NE or
Charles St. &
3 Mile Rd. | 115
acres | Vulcan
(private) | 115 acres of land owned by Vulcan that is mostly agricultural and slated for future residential development. | Incorporate Conservation or Low Impact design standards into future residential development plans. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Caledonia | WDNR; USACE;
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a
Conservation or Low Impact
Development cannot be
determined | As new development occurs | | | LTURAL MANA | | ` | · · · · · · · · · · · · · · · · · · · | | | | | | | | | Technic | | l Assistanc | e Needs: Tech | nnical and financial assistance needed to imple | ment farm management practices is relative | | rograms of | fered by agenci | es such as USDA | | | | AG2 | E & W of
Route 32 &
N or 7 Mile
Rd. | 115
acres | Private
agricultural
land | 115 acres of agricultural land in row crop production at headwaters of Tributary E. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 548 lbs/yr
TP= 294 lbs/yr
TSS=192 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | AG3 | Along Union
Pacific RR
between 7
Mile & 6 Mile
Rds. | 259
acres | Private
agricultural
land | 259 acres of agricultural land in row crop production. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 1138 lbs/yr
TP= 610 lbs/yr
TSS=391 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | AG4 | W of Route
31 & S of 6
Mile Rd. | 113
acres | Private
agricultural
land | 113 acres of agricultural land in row crop production at headwaters of Tributary G. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 539 lbs/yr
TP= 289 lbs/yr
TSS=189 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | AG5 | E of Middle
Rd. & S of 6
Mile Rd. | 159
acres | Private
agricultural
land | 159 acres of agricultural land in row crop production. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 734 lbs/yr
TP= 393 lbs/yr
TSS=255 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | AG6 | E & W of
Route 32 &
along 4 Mile
Rd. | 132
acres | Private
agricultural
land | 132 acres of agricultural land in row crop production at headwaters of Tributary G. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 620 lbs/yr
TP= 333 lbs/yr
TSS=217 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | AG7 | Along
Charles St.
& N of 3 Mile
Rd. | 88 acres | Private
agricultural
land | 88 acres of agricultural land in row crop production. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 431 lbs/yr
TP= 231 lbs/yr
TSS=152 tons/yr | High:
Critical
Area | Existing
Farmers/
Land Owners | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |---------|---------------------------------------|-------------------------------------|---------------------------------|---|--|---|----------|-------------------------|---|--|---| | OTHER I | MANAGEMENT | T MEASURE | ES (See Figure | e 74) | | | | | | | | | Technic | al and Financia | al Assistanc | e Needs: Tec | hnical and financial assistance needed to impleme | ent these projects varies depending on complexity | <i>/</i> . | | | | | | | 3 | Between 6
Mile Rd. &
Trib G | 2,000 lf | Caledonia
(Pubic) | Existing concrete bottom channel flowing south between 6 Mile Rd. and Tributary G. Channel is located within residential subdivision. | Design and implement project to remove concrete channel and create bioswale dominated by native vegetation to improve water quality, wildlife habitat, and green infrastructure. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Caledonia | Engineer
&
Ecological
Consultants | \$100,000 to
design and install
bioswale | 10-20+ Years | | 4 | Crestview Park on Crestview Park Dr. | 1,000 lf | Caledonia
(Public) | Series of existing turf grass swales within Crestview Park. | Design and implement project to retrofit existing turf grass swales with native vegetation to create bioswales. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Caledonia | Ecological
Consultants | \$25,000 to design
and install
bioswale | 10-20+ Years | | 5 | Between 4
½ Mile Rd.
and Trib G | 3,000 lf | Caledonia
(Public) | Existing turf grass swale between 4 ½ Mile Rd. and Tributary G that flows between residential areas. | Design and implement project to retrofit existing turf grass swale with native vegetation to create bioswale. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Caledonia | Engineer &
Ecological
Consultants | \$60,000 to design
and install
bioswale | 10-20+ Years | | 6 | Ravine Bay
Estates
Subdivision | 0.5 acre | Subdivision
(Private) | Residential subdivision under construction that does not appear to have any stormwater detention. Subdivision stomwsewers appear to outlet into small intermittent tributary that eventually flows to Tributary I. The intermittent tributary is currently stable with minimal erosion. | Consider designing and implementing a naturalized detention basin in open lot at corner of Horner Dr. & Marwood Dr. with strict stormwater release rates to project the condition of the small intermittent tributary. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Medium | Developer/
Caledonia | Engineer &
Ecological
Consultants | \$80,000 to design
and construct
detention basin | Before
Residential
Development is
Complete | | 8 | St. Rita
School | 1/8 acre | St. Rita
School
(Private) | Depressional area in front of school with several stormwater downspouts draining to it. | Design and construct demonstration rain garden. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Low | St. Rita
School | Root-Pike WIN | \$10,000 to design
and install rain
garden | 10-20+ Years | | NORT | NORTH BAY | | | | | | | | | | | | |-------------------------------------|---|-------------------------------------|--------------------------------------|---|---|--|----------|-----------------------|--|--|---------------------------------------|--| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | | RIPARIAN | RIPARIAN AREA RESTORATION & MAINTENANCE (See Figure 71) | | | | | | | | | | | | | | echnical and Financial Assistance Needs: Technical assistance needed to implement riparian area & lake buffer restoration and maintenance is moderate at first because an environmental consultant is usually hired to complete a plan and molement the work. However, costs can be greatly reduced over time if municipal or park district staff complete some restoration and most of the long term maintenance in house. Private landowners will need the greatest assistance. | | | | | | | | | | | | | TRI L:
Tributary
L Reach
1 | Erie St. to Lake
Michigan | 3,141
linear
feet | Private
Residential
Properties | 3,141 If of tributary in close proximity to residential lots. The channel is relatively stable but the riparian area is narrow and generally not in good ecological condition as private residents have elected to install different buffer treatments. | Enhance select riparian buffer areas by engaging residents in an educational forum where they learn to enhance buffer areas using ecologically sound approaches. Residents implement buffer enhancements following education. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private Owners | Root-Pike WIN;
Ecological
Consultant | \$15,000 to restore
riparian buffer; \$3,000/
yr maintenance | 10-20+ Years | | | OAK (| CREEK | | | | | | | | | | | |---------------|---|-------------------------------------|--|---|---|--|---------------------------|-----------------------------------|---|---|--| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | DETENTIO | ON BASIN RETRO | FITS & MA | INTENANCE (| See Figure 68) | | | | | | | | | Technical | and Financial Ass | sistance Ne | eeds: Technic | al assistance needed to implement detent | ion basin retrofits is relatively low while financ | cial assistance need | ds are mode | rate. Private lando | wners will need | the greatest assistance. | | | 4B | N end of
MMSD South
Shore WWTP | 35 acres | MMSD
(private) | Series of existing linear dry bottom
detention features with mown turf
grass slopes and concrete channels on
MMSD South Shore WWTP property. | Design and implement project to retrofit existing detention features to create linear bioinfiltration swales planted with native vegetation. Project would enhance and expand on existing green infrastructure along Lake Michigan. | Infiltration Basin:
TSS=23 tons/yr
TN=336 lbs/yr
TP=42 lbs/yr
Bacteria=78% | High:
Critical
Area | MMSD | Civil Engineer
& Ecological
Consultant/
Contractor | \$250,000 to design and
install bioinfiltration
features; \$5,000/year
maintenance | 1-10 Years | | 5A, 5B,
5C | Residential
subdivision
along 6th
Street | 2.3 acres | Residential
HOA
(private) | Three existing wet bottom detention basins with mown turf grass side slopes. Basin A in not yet complete. Scattered invasive willow is also present. | Design and implement project to retrofit existing detention basins by installing native vegetation along side slopes and emergent zones; control invasive willow. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Residential
HOA | Ecological
Consultant/
Contractor | \$37,000 to design
and install native
vegetation; \$2,000/
year maintenance | 10-20+ Years | | 8A, 8B,
8C | Bender Park | 2.7 acres | Milwaukee
County
Parks
(Public) | Three existing naturalized wetland bottom detention basins along restored bluff area in Bender Park. All are in good ecological condition. | Continue of begin to implement management program to maintain current condition. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Milwaukee
County Parks | None needed | \$2,000/yr maintenance | Ongoing | | 9A | NE corner
of The Bluffs
Subdivision | 0.6 acres | Residential
HOA
(Private) | Existing wet bottom detention basin dominated by cattail along the edge and with mown turf grass side slopes adjacent to Union Pacific RR. Surrounding development is currently under construction. | Design and implement project to retrofit existing basin by installing native vegetation along side slopes to improve water quality, wildlife habitat, and green infrastructure connection benefits. | Wet Pond Det.:
TSS = 60%
TN = 35%
TP = 45%
Bacteria = 70% | Medium | Developer &
Residential
HOA | City of Oak
Creek | \$8,000 to design
and install native
vegetation; \$1,000/
year maintenance | Prior to
developer
completing
subdivision | | WETLAND | RESTORATION (| (See Figure | e 69) | | | | | | | | | | Technical | and Financial As | sistance Ne | | | and require high technical and financial assi | • | | • | | | | | 23 | We Energies
Property | 9 acres | We
Energies
(private) | 9 acres of drained hydric soils on south
side of We Energies plant along the
Lake Michigan coast/bluff.
Area is
partially developed. | Investigate potential for wetland restoration area that could be used to mitigate for future wetland impacts by We Energies. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | We Energies | Ecological
Consultant | \$135,000 to design/
permit/install/
maintain wetland
mitigation | As needed by
We Energies | | 24 | N of Ryan Rd. | 5 acres | DuPont
(private) | 5 acres of wetland that has been altered via installation of a drainage channel. | Restore wetland as part of future redevelopment plan for the site. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Future
Developer; Oak
Creek | Landscape
Architect | \$40,000 to design & install wetland | When redevelopment occurs | | 25 | Between 5th
Ave. & Union
Pacific RR | 5 acres | Industrial
Site Owner
(private) | 5 acres of drained hydric soils adjacent to existing wetland complex. Area is slated for future mixed use development. | Restore wetlands as part of future development. | Wetland Restore:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Future
Developer; Oak
Creek | Engineer;
Ecological
Consultant | \$40,000 to design & install wetland | When redevelopment occurs | | ID# | Location | Units (acres/linear feet) | Owner (public or private) | Existing Condition | Management Measure Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |-------------------------------------|--|---------------------------|--|---|---|--|---------------------------|------------------------------------|--|---|--| | STREAME | BANK, RAVIN | IE, & CHANN | EL RESTORAT | TION (See Figure 70) | | | | | | | | | | | | | | echnical and financial assistance needs to prote financial assistance associated with stream mai | | | | | | more complex in | | TRB 2:
Tributary
B Reach
2 | Bender
Park | 1,497 linear
feet | Milwaukee
County
Parks
(public) | 1,497 If of tributary (to Lake Michigan) within Bender Park that is naturally meandering but with moderately to highly eroded streambanks resulting from a headcut. Reach is bordered immediately by young mesic woodland. | Design, permit, and implement project to stabilize headcut and selectively stabilize highly eroded areas using bioengineering techniques. In addition, install up to five artificial riffles/grade controls within the stream channel. | Stabilize Banks:
TSS = 69 tons/yr
TN = 137 lbs/yr
TP = 69 lbs/yr
Bacteria = n/a | High:
Critical
Area | Milwaukee
County Parks | WDNR;
Hydrologist;
Ecological
Consultant;
Contractor | \$250,000 to
design, permit,
and implement
stabilization
measures | 1-10 Years
Design; 10+
Years Build | | TRD 2:
Tributary
D Reach
2 | N side
of We
Energies
property | 1,537 linear
feet | We
Energies
(private) | 1,537 If of tributary (to Lake Michigan) on land owned by We Energies. Upper portion of reach is naturally meandering but exhibits highly eroded streambanks. About 500 If along the downstream portion of the reach is a deep ravine with severe erosion prior to joining Lake Michigan. | Design, permit, and implement project to stabilize highly eroded stream and ravine slopes using a combination of bioengineering and hard armoring approaches. Grade controls will also be needed within the channel to control flow velocities. | Stabilize Banks:
TSS=1,753 t/yr
TN =3,506 lbs/yr
TP =1,753 lbs/yr
Bacteria = n/a | High:
Critical
Area | We Energies | WDNR;
Hydrologist;
Ecological
Consultant;
Contractor | \$1,200,000 to
design, permit,
and implement
stabilization
measures | 1-10 Years
Design; 10+
Years Build | | RIPARIAN | AREA REST | ORATION & N | MAINTENANC | E (See Figure 71) | | | | | | | | | | | | | | area & lake buffer restoration and maintenance ict staff complete some restoration and most of t | | | | | | | | TRA 1:
Tributary
A Reach
1 | Union
Pacific RR
to Lake
Michigan | 3,468 linear
feet | Private
residential
lots &
MMSD | 3,468 If of tributary reach with a degraded riparian buffer dominated by invasive mown turf grass and invasive shrubs and trees. | Achieve SEWRPC recommended Goals of 75 whereby 75% minimum of the total stream length should be naturally vegetated and 75 foot wide minimum riparian buffer established. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Medium | Private
Owners | Ecological
Consultant/
Contractor | \$45,000 to
restore riparian
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRB 1:
Tributary
B Reach
1 | Bender
Park | 2,291 linear
feet | Milwaukee
County
Parks
(public) | 2,291 If of tributary within Bender Park with riparian area dominated by invasive shrubs, trees, and other herbaceous species. | Remove invasive shrubs and trees and spot herbicide problematic herbaceous species within a minimum 75 foot buffer on each side of tributary. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Medium | Milwaukee
County Parks | none | \$42,000 to enhance
buffer; \$5,000/yr
maintenance | 10-20+ Years | | TRB 2:
Tributary
B Reach
2 | Bender
Park | 1,497 linear
feet | Milwaukee
County
Parks
(public) | 1,497 If of tributary within Bender Park with
good quality mesic woodland buffer but with
overabundant sugar maple that is shading the
herbaceous layer. | Selectively remove young maple trees and other invasive species in the immediate riparian corridor and supplement herbaceous layer with native species to help stabilize stream bank and floodplain soils. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Milwaukee
County Parks | none | \$20,000 to enhance
buffer; \$3,000/yr
maintenance | 10-20+ Years | | TRC 1:
Tributary
C Reach
1 | Bender
Park | 2,693 linear
feet | Milwaukee
County
Parks
(public) | 2,693 If of tributary within Bender Park with riparian area consisting of many second growth invasive woody species and degraded sedge meadow. | Enhance riparian area by selectively removing invasive woody species and interseeding existing sedge meadow to enhance diversity. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Medium | Milwaukee
County Parks | none | \$40,000 to enhance
buffer; \$5,000/yr
maintenance | 10-20+ Years | | GREEN IN | NFRASTRUC [*] | TURE PROTEC | CTION AREAS | (See Figure 72) | | | | | | | | | Technical | and Financ | ial Assistance | Needs: Techi | nical and financial assistance needed to protect | ct open space or implement conservation/low in | npact development | is high bed | cause of land, de | esign/permitting, a | | | | GI2 | NW
corner of
Puetz Rd.
& 5th Ave. | 90 acres | Private land | 90 acres on private parcels along headwaters of Tributary A and also including SEWRPC Environmental Corridors. Parcels are slated to become residential development in the future. | Incorporate Conservation or Low Impact design standards into future development plans. | Pollutant reduction
cannot be
assessed via
modeling | High:
Critical
Area | Future
Developer;
Oak Creek | WDNR; USACE;
SEWRPC
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a Conservation or Low Impact Development cannot be determined | As new
development
occurs | | GI3 | N of Ryan
Road | 250 acres | Mostly
private
vacant land | 250 acres of mostly vacant brownfields know
as the Lakefront Redevelopment Area. In
2011 the City of Oak Creek produced and
adopted a redevelopment plan for the site that
includes redevelopment incorporating green
infrastructure. | Implement development concepts outlined in the City Redevelopment Plan and stabilize shoreline to prevent bluff erosion. | Pollutant reduction
cannot be
assessed via
modeling | High:
Critical
Area | Future
Developers;
Oak Creek | UW-Milwaukee;
WDNR; USACE;
SEWRPC
NRCS/ SWCD | Cost for implementing proposed designs cannot be determined | As new development occurs | | ID# | Location | Units
(acres/
linear feet) | Owner
(public or
private) | Existing Condition | Management Measure Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | |---|--|----------------------------------|---
---|---|---|---------------------------|---|--|--|--| | GI4 | Between
Fitzsimmons
& Oakwood
Rd. | 95 acres | Private
agricultural
& vacant
land | 95 acres of private agricultural and vacant land adjacent to Bender Park and slated for future residential development. | Milwaukee County Department of Parks consider purchasing and restoring parcels to increase open space/green infrastructure adjacent to Bender Park. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Milwaukee
County Parks | n/a | Cost cannot be determined | As parcels
become
available for
purchase | | GI5 | S of
Oakwood Rd. | 36 acres | We
Energies
Property | 36 acres of land currently owned by We Energies but slated for future residential/mixed use development. Parcels also include SEWRPC Environmental Corridors. | Incorporate Conservation or Low Impact design standards into future development plans. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Oak Creek;
We Energies | WDNR; USACE;
SEWRPC
NRCS/ SWCD;
Eco. Consultant | Cost for implementing a Conservation or Low Impact Development cannot be determined | As new development occurs | | AGRICUL | LTURAL MANAG | EMENT PRAC | CTICES (See F | igure 73) | | | | | | | | | Technica | al and Financial | Assistance Ne | eeds: Technic | al and financial assistance needed to imple | ment farm management practices is relatively lo | w because of progr | rams offere | d by agencies s | uch as USDA/NR | CS. | | | AG1 | E & W of Union Pacific RR & between Ryan & Oakwood Rds. | 109 acres | Private
agricultural
land | 109 acres of agricultural land in row crop production. | Enroll in NRCS/SWCD programs and implement conservation tillage (no till) with filter strips. | No Till w/Filters:
TN= 507 lbs/yr
TP= 272 lbs/yr
TSS=177 tons/yr | High:
Critical
Area | Existing
Farmer/Land
Owner | NRCS/SWCD | The cost for implementing conservation tillage depends on available equipment and crop type | Annually | | OTHER N | MANAGEMENT N | MEASURES (S | See Figure 74) | | | | | | | | | | Technical and Financial Assistance Needs: Technical and financial assistance needed to implement these projects varies depending on complexity. | | | | | | | | | | | | | 2 | Lake
Michigan
Bluff from
Fitzsimmons
Rd. S to Elm
Rd. | 4,500 lf | Milwaukee
Co. Parks
& We
Energies | Approximately 4,500 linear feet of severe/
accelerated bluff erosion along Lake
Michigan on land owned by Milwaukee
Co. Parks and We Energies. | Develop a feasibility study to determine the need for and costs of stabilizing the eroded bluff using approaches similar to the bluff stabilization work that was completed at Bender Park. | n/a | High:
Critical
Area | Milwaukee
Co. Parks &
We Energies | Structural
Engineer,
Planning &
Ecologist firms | \$50,000 to conduct
feasibility study; cost
to construct cannot
be determined until
plans are complete | 1-10 Years Design; 10+ Years Build if determined necessary | | RACII | RACINE | | | | | | | | | | | | |-------------------------------------|---|--|---|---|---|---|---------------------------|-----------------------------------|--|--|---------------------------------------|--| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | | DETENTIO | DETENTION BASIN RETROFITS & MAINTENANCE (See Figure 68) | | | | | | | | | | | | | Technical | Technical and Financial Assistance Needs: Technical assistance needed to implement detention basin retrofits is relatively low while financial assistance needs are moderate. Private landowners will need the greatest assistance. | | | | | | | | | | | | | 39B | Vidian Chelsak
Park | 3 acres | Racine
(public) | Existing dry bottom detention basin within Vidian Chelsak Park along the south side of 3 Mile Rd. Vegetation in the basin consists of mown turf grass. | Design and implement project to replace turf grass and revegetate with native vegetation to improve water quality, wildlife, and green infrastructure benefits while reducing long term maintenance costs. Project would also be good demonstration for public. | Dry Detention:
TSS = 22 tons/yr
TN = 148 lbs/yr
TP = 32 lbs/yr
Bacteria = 88% | High:
Critical
Area | Racine | Root-Pike WIN;
Civil Engineer;
Ecological
Consultant/
Contractor | \$40,000 to design
and install prairie
vegetation; \$2,000/
year maintenance | 1-10 Years | | | 39D | Matson Park
Detention | 0.9 acres | Racine
(public) | Existing dry bottom detention basin within Matson Park consisting of mown turf grass. | Design and implement project to naturalize basin with native vegetation as a demonstration project for the public to see the benefits of improved water quality, wildlife habitat, and green infrastructure. | Dry Detention:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 88% | Medium | Racine | Root-Pike WIN;
Civil Engineer;
Ecological
Consultant/
Contractor | \$15,000 to design
and install prairie
vegetation; \$1,000/yr
maintenance | 10-20+ Years | | | 43A | Between
William St. &
Layard Ave. | 13.3
acres | Racine
(private) | Existing regional storage area that has been naturalized in part with native prairie and wetland vegetation. Several invasive species are common on the site. | Implement a monitoring and management program to keep invasive species under control and to ensure the storage area performs as designed. | Wetland Det:
TSS=280 tons/yr
TN=1,800 lbs/yr
TP=456 lbs/yr
Bacteria=78% | High:
Critical
Area | Caledonia | Caledonia;
Civil Engineer;
Ecological
Consultant/
Contractor | \$450,000 to design,
permit, and install;
\$6,000/yr maintenance | 1-10 Years | | | WETLAND | O RESTORATION | (See Figure | e 69) | | | | | | | | | | | Technical | and Financial As | sistance N | eeds: Wetland | restoration projects are typically complex | and require high technical and financial assi | stance needs to pro | otect land, de | esign, construct, n | nonitor, and main | tain the restoration. | | | | 2 | SE corner of
Route 32 and 3
Mile Rd. | 25 acres | Vulcan
Materials
Company
(private) | 25 acres of drained wetland located within parcel owned by Vulcan Materials Company. Land is slated for future residential development. | Incorporate up to 50% of the site as wetland restoration into future development plans and use restored wetland areas as wetland detention and mitigation. | Wetland:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Future
Developer;
Caledonia | WDNR; NRCS;
Engineer;
Ecological
Consultant | \$375,000 to design/
permit/install/
maintain wetland
mitigation bank | When planning for development occurs | | | RIPARIAN | AREA RESTORAT | ΓΙΟΝ & ΜΑ | INTENANCE (S | See Figure 71) | | | | | | | | | | | | | | | n area & lake buffer restoration and maintenariet staff complete some restoration and mos | | | | | | | | | TRI K:
Tributary
K Reach
1 | North of 3 Mile
Rd. to Lake
Michigan | 2,428
linear
feet
mostly in
Racine | Primarily
Private
Residential
Properties | 2,428 If of tributary, most of which is located in close proximity to residential lots. The channel is relatively stable but the riparian area is narrow and generally not in good ecological condition as private residents have elected to install different buffer treatments. | Enhance select riparian buffer areas by engaging residents in an educational forum where they learn to enhance buffer areas using ecologically sound approaches. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private Owners | Root-Pike WIN;
Racine | n/a | 10-20+ Years | | | GREEN IN | IFRASTRUCTURE | PROTECT | ION AREAS
(Se | ee Figure 72) | | | | | | | | | | Technical | and Financial As | sistance N | eeds: Technica | al and financial assistance needed to prote | ect open space or implement conservation/lo | ow impact developr | nent is high | because of land, | design/permitting | , and construction costs. | | | | Gl11 | S of 3 Mile Rd. | 56 acres | Vulcan
(private) | 56 acres of land owned by Vulcan that is mostly vacant and slated for future residential development. | Incorporate Conservation or Low Impact design standards into future residential development plans. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
Racine | WDNR;
USACE; NRCS/
SWCD; Eco.
Consultant | Cost for implementing
a Conservation or Low
Impact Development
cannot be determined | As new development occurs | | | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | |---------|---|-------------------------------------|---|---|--|---|----------|--------------------------------------|--|---|---------------------------------------|--| | | OTHER MANAGEMENT MEASURES (See Figure 74) | | | | | | | | | | | | | Technic | Technical and Financial Assistance Needs: Technical and financial assistance needed to implement these projects varies depending on complexity. | | | | | | | | | | | | | 9 | W of Wyoming Way Rd. (Sundance Sub.) & N side of Batten Airport | 2,000 lf | Sundance
Sub. & Batten
Airport
(Private) | Existing concrete bottom swale beginning in Sundance Sub. & flowing south then east through the northern portion of Batten Airport. | Design and implement project to remove concrete channel and create bioswale dominated by native vegetation to improve water quality, wildlife habitat, and green infrastructure. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Sundance
Sub. & Batten
Airport | Engineering
& Ecological
Consultants | \$100,000 to
create bioswale | 10-20 + Years | | | 10 | Batten
Airport | 300
acres | Batten Airport
(Private) | Existing mowed turf grass areas surrounding all runways. | Investigate possibility to naturalize about 150 acres of turf at airport with short grass native prairie vegetation. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Batten Airport | Ecological
Consultant | \$400,000 to install
150 acres of
native vegetation | 10-20 + Years | | | 11 | Douglas
Park/Cesar
Chavez
Center | 1/8 acre | Racine
(Public) | Parking lot at Douglas Park draining to manholes; adjacent unused mowed turf grass area. | Design and implement project to create curb cuts and drain stormwater runoff from parking lot to constructed rain gardens. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Low | Racine | Engineering
& Ecological
Consultants | \$15,000 to design
and construct
rain garden | 10-20 + Years | | | 12 | Second
Presbyterian
Church | 1/8 acre | Second
Presbyterian
Church
(Private) | Parking lot at church drains stormwater NE to turf grass area. | Design and implement project to create bioswale at NE corner of parking lot. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Second
Presbyterian
Church | Ecological
Consultant | \$15,000 to design
and install
bioswale | 10-20 + Years | | | 13 | Trinity
Lutheran
Church | 1/16
acre | Trinity
Lutheran
Church
(Private) | Small depressional area near secondary entry to church taking on stomwater from small pipe. | Design and implement project to create rain garden in small depressional area. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Low | Trinity
Lutheran
Church | Ecological
Consultant | \$6,000 to design
and construct
rain garden | 10-20 + Years | | | 14 | Roosevelt
Elementary
School | 1/16
acre | Roosevelt
Elementary
School
(Private) | Several stormwater downspouts into linear
turf grass area on east side of school/along
Superior St. | Design and implement project to create rain gardens along turn area. This would also be a good demonstration project for the school. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Low | Roosevelt
Elementary
School | Root-Pike WIN | \$10,000 to design
and construct
rain garden | 10-20 + Years | | | 15 | Racine
Municipal
Parking
Area on
Wisconsin
St. | 1.0 acres | Racine
(Public) | Older municipal parking area on west side of
Wisconsin St. | Consider designing and implementing community park that incorporates stormwater BMPs such as rain gardens, bioswales, etc. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Medium | Racine | Planner,
Engineer,
Ecologist Firms | \$200,000 to
design and
construct project | 10-20 + Years | | | 16 | St. Johns
Church | 1/16
acre | St. Johns
Church
(Private) | Linear turf grass area along south side of church/English St. with several stormwater downspouts draining to it. | Design and implement project to create rain garden in turf area. | Wetland Det:
TSS=77.5%
TN= 20%
TP= 40%
Bacteria=78% | Low | St. Johns
Church | Ecological
Consultan | \$10,000 to design
and construct
rain garden | 10-20 + Years | | | SOUT | SOUTH MILWAUKEE | | | | | | | | | | | |-----------|---|-------------------------------------|---------------------------------|---|--|--|---------------------------|--|---|---|---------------------------------------| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | DETENTION | DETENTION BASIN RETROFITS & MAINTENANCE (See Figure 68) | | | | | | | | | | | | Technical | l and Financial As | sistance N | eeds: Technica | al assistance needed to implement detent | ion basin retrofits is relatively low while finan | cial assistance need | ds are mode | ate. Private lando | wners will need | the greatest assistance. | | | 1A | N end of 11th
Ave. | 0.36
acres | Business
Park
(private) | Existing wet bottom detention basins with mown turf grass side slopes within business park along 11th Ave. Basin edges are overgrown in areas with invasive willow. | Design and implement project to remove turf grass from side slopes and revegetate with native vegetation then maintain indefinitely. Also remove invasive willow. Project would expand on green infrastructure located to north. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Business
Association | Ecological
Consultant/
Contractor | \$12,000 to design
and install prairie
vegetation; \$1,000/
year maintenance | 10-20+ Years | | 1B | Behind Grant
Park Plaza | 0.50
acres | Business
Park
(private) | Existing naturalized wetland bottom detention basin servicing adjacent business park. Much of the prairie buffer planting has failed and there is a severely eroded swale near the inlet. | Design and implement project to replant prairie buffer and fixe eroded swale near inlet. Project would expand and enhance on surrounding green infrastructure. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Business
Association | Ecological
Consultant/
Contractor | \$12,000 to replant
prairie vegetation
and stabilize eroded
swale; \$1,000/year
maintenance | 1-10 Years | | 3C | Behind
Franciscan
Villa | 0.53
acres | Common
Living
(private) | Existing wetland bottom detention basin with mown turf grass side slopes along the Union Pacific Railroad. | Design and implement project to remove turf grass from side slopes and revegetate with native vegetation then maintain indefinitely. Project would expand on green infrastructure along RR. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Low | Association | Ecological
Consultant/
Contractor | \$14,500 to design
and install prairie
vegetation; \$1,500/
year maintenance | 10-20+ Years | | GREEN IN | NFRASTRUCTURE | PROTECT | ION AREAS (S | ee Figure 72) | | | | | | | | | Technical | l and
Financial As | sistance N | eeds: Technica | al and financial assistance needed to prote | ect open space or implement conservation/lo | ow impact developr | ment is high | because of land, o | design/permitting | g, and construction costs. | | | Gl1 | NE corner of
Marina Rd. and
5th Avenue | 18 acres | South
Milwaukee/
USEP | 18 acres on public land that is currently a USEPA Superfund Site along the Lake Michigan coast. This parcel is slated for future residential development. | Incorporate Conservation Design or
Low Impact design standards into
future development plans to preserve
green infrastructure benefits along Lake
Michigan. | Pollutant
reduction cannot
be assessed via
modeling | High:
Critical
Area | Future
Developer;
South
Milwaukee | WDNR;
USACE; NRCS/
SWCD; Eco.
Consultant | Cost for implementing
a Conservation or Low
Impact Development
cannot be determined | As new
development
occurs | | OTHER M | IANAGEMENT ME | ASURES (| See Figure 74) | | | | | | | | | | Technical | l and Financial As | sistance N | eeds: Technica | al and financial assistance needed to impl | ement these projects varies depending on co | omplexity. | | | | | | | 1 | Lake Shore Dr.
& Menomonee
Ave. | 0.5 | South
Milwaukee
(Pubic) | Existing dump site on side of cliff along Lake Michigan. | Clean up dumped debris and install educational signage. | n/a | Medium | South
Milwaukee | Root-Pike WIN | \$5,000 to clean up and install signage | Annually | | WINE | WIND POINT | | | | | | | | | | | |-------------------------------------|---|--|---|---|--|---|---------------------------|---|--|--|---------------------------------------| | ID# | Location | Units
(acres/
linear
feet) | Owner
(public or
private) | Existing Condition | Management Measure
Recommendation | Pollutant
Reduction
Efficiency | Priority | Responsible
Entity | Sources of
Technical
Assistance | Cost Estimate | Implementation
Schedule
(Years) | | | DETENTION BASIN RETROFITS & MAINTENANCE (See Figure 68) | | | | | | | | | | | | Technical | Technical and Financial Assistance Needs: Technical assistance needed to implement detention basin retrofits is relatively low while financial assistance needs are moderate. Private landowners will need the greatest assistance. | | | | | | | | | | | | 31B | S side of Wind
Point School | 3 acres | Wind Point
School
(public) | Existing shallow wetland bottom detention bottom servicing school grounds. Slopes adjacent to basin are mown turf grass. Existing basin is comprised almost entirely of invasive species. | Design and implement project to retrofit existing detention area with native vegetation. Project would be excellent demonstration project for school and surrounding community. | Wetland Det.:
TSS = 77.5%
TN = 20%
TP = 44%
Bacteria = 78% | Medium | Wind Point
School | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$30,000 to design
and install prairie
vegetation; \$2,000/
year maintenance | 10-20+ Years | | 37C | Adjacent to
Prairie School | 20.2
acres | Prairie
School &
adjacent
landowners | Large excavated pond used as detention for Prairie School and other surrounding development. Pond buffer is prairie north of Prairie School and generally weedy old field vegetation in other areas. Some moderate erosion is occurring around portions of the shoreline. | Design and implement project to alter outlet structure and concrete channel and naturalize entire pond shoreline and emergent zone to create wetland detention for water quality, wildlife, and green infrastructure benefits. | Wetland Det:
TSS=55 tons/yr
TN=328 lbs/yr
TP=87 lbs/yr
Bacteria=78% | High:
Critical
Area | Prairie School
(lead); and
other adjacent
landowners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$230,000 to design
and install prairie
and wetland
vegetation; \$5,000/yr
maintenance | Phased over
1-10 Years | | WETLAND | RESTORATION | (See Figure | e 69) | | | | | | | | | | Technical | and Financial As | sistance N | eeds: Wetland | restoration projects are typically complex | and require high technical and financial ass | istance needs to pro | tect land, de | esign, construct, n | nonitor, and mainta | ain the restoration. | | | 9 | Shoop Park
Golf Course W
of Lighthouse
Dr. | 3 acres | Golf Course
(private) | 3 acre turf grass swale in Shoop Park
Golf Course that drains adjacent course
areas and residential area no north
south to wetland swale complex that
flows east to Lake Michigan. | Restore wetland swale within golf course. A restored wetland would help filter pollutants, provide wildlife habitat, green infrastructure, and be a good demonstration project for the public to see. | Wetland Restore:
TSS=7 tons/yr
TN=36 lbs/yr
TP=12 lbs/yr
Bacteria=78% | High:
Critical
Area | Golf Course | Wind Point;
Course
Superintendent;
Ecological
Consultant | \$40,000 to design/
permit/install/
maintain wetland | 1-10 Years | | 10 | Johnson
Foundation at
Wingspread | 7 acres | Johnson
Foundation
(private) | Approximately 7 acres of shallow ponds created via earthen dams along a historic wetland swale on land owned by the Johnson Foundation. | Remove earthen dams and restore wetland hydrology and native wetland plants to benefit water quality, wildlife habitat, and other green infrastructure benefits. | Wetland Restore:
TSS=20 tons/yr
TN=127 lbs/yr
TP=39 lbs/yr
Bacteria = 78% | High:
Critical
Area | Johnson
Foundation | WDNR;
Ecological
Consultant | \$175,000 to design/
permit/install/
maintain wetland | 1-10 Years | | RIPARIAN | AREA RESTORAT | TION & MA | INTENANCE (S | See Figure 71) | | | | | | | | | | | | | | n area & lake buffer restoration and maintenariet staff complete some restoration and mo | | | | | | | | TRI J:
Tributary
J Reach
1 | West of Erie
St. to Lake
Michigan | 7,468
linear
feet
(3,700
in Wind
Point) | Primarily
Private
Residential
Properties | 3,700 If of downstream portion of tributary that is in good ecological condition with intact floodplain dominated by older second growth woody species. Some invasive species such as buckthorn and honeysuckle are found in the riparian area. | Enhance select riparian buffer areas by selectively removing invasive woody species. | Filter Strip:
TN = 40%
TP = 45%
TSS = 73%
Bacteria = 37% | Low | Private Owners | Root-Pike WIN;
Ecological
Consultant/
Contractor | \$34,000 to
enhance riparian
buffer; \$4,000/yr
maintenance | 10-20+ Years | | OTHER M | ANAGEMENT ME | EASURES (| See Figure 74) | | | | | | | | | | Technical | and Financial As | sistance N | eeds: Technica | al and financial assistance needed to impl | ement these projects varies depending on co | omplexity. | | | | | | | 7 | Shoop Park
Golf Course | 60 acres | Shoop Park
Golf Course
(Pubic) | Golf course with rough areas consisting of mowed turf grass. | Retrofit rough areas of golf course by removing turf grass and replacing with native vegetation. | Filter Strip:
TN= 40%
TP= 45%
TSS= 73% | Low | Golf Course/
Wind Point | Ecological
and Golf
Course Design
Consultants | \$100,000 to install
approximately 30
acres of prairie
vegetation | 10-20 + Years |